Tunable high-performance microwave absorption for manganese dioxides by one-step Co doping modification

نویسندگان

  • Guocheng Lv
  • Xuebing Xing
  • Limei Wu
  • Wei-Teh Jiang
  • Zhaohui Li
  • Libing Liao
چکیده

The frequencies of microwave absorption can be affected by the permanent electric dipole moment which could be adjusted by modifying the crystal symmetry of the microwave absorbing materials. Herein, we corroborate this strategy experimentally and computationally to the microwave absorption of manganese dioxides. Nanosized Co-doped cryptomelane (Co-Cryp) was successfully synthesized by a one-step reaction. The introduction of Co(III) induced a change of crystal symmetry from tetragonal to monlclinic, which could lead to an increase of its permanent electric dipole moment. As a result, the frequencies of maximum microwave absorption were regulated in the range of 7.4 to 13.9 GHz with a broadened bandwidths. The results suggested that microwave absorption of manganese dioxides can be tailored with Co doping to expand their potential uses for abatement of various microwave pollutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform doping of metal oxide nanowires using solid state diffusion.

The synthesis of one-dimensional nanostructures with specific properties is often hindered by difficulty in tuning the material composition without sacrificing morphology and material quality. Here, we present a simple solid state diffusion method utilizing atomic layer deposition to controllably alter the composition of metal oxide nanowires. This compositional control allows for modification ...

متن کامل

Influences of Co2+ & Er3+ Co-doping on the Structural and Physical Properties of ZnO Nanocrystals Synthesized by Hydrothermal Route

Co2+ & Er3+ co-doped ZnO nanocrystals were synthesized by the hydrothermal method at 180°C and pH= 12 for 48 h. Powder XRD patterns indicate that the Zn1-2xErxCoxO crystals (0.00<x≤0.035) are isostructural with ZnO. The cell parameters increase for Er3+ and Co2+ upon increasing the dopant content (x). SEM images show that doping of Er3+ and Co2+ into the sites of Zn2+ does not change the morpho...

متن کامل

Fabrication of Silver doped Buckypaper and Investigation of its Properties

Microwave absorbing property of composites containing Ag nanoparticles filled multiwalled carbon nanotube buckypaper (Ag-BP) has been investigated. Buckypaper doped with silver was prepared by direct dispersion and filtration method. From the low temperature resistivity measurement it was found that increasing doping level decreases the electrical conductivity of the buckypaper. 30 wt. % and 40...

متن کامل

Influences of Co2+ & Er3+ Co-doping on the Structural and Physical Properties of ZnO Nanocrystals Synthesized by Hydrothermal Route

Co2+ & Er3+ co-doped ZnO nanocrystals were synthesized by the hydrothermal method at 180°C and pH= 12 for 48 h. Powder XRD patterns indicate that the Zn1-2xErxCoxO crystals (0.00<x≤0.035) are isostructural with ZnO. The cell parameters increase for Er3+ and Co2+ upon increasing the dopant content (x). SEM images show that doping of Er3+ and Co2+ into the sites of Zn2+ does not change the morpho...

متن کامل

Improvement of dielectric loss tangent of Al2O3 doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices

Al2O3 doped Ba0.5Sr0.5TiO3 ~BST! thin films, with different Al2O3 contents, were deposited on ~100! LaAlO3 substrates by the pulsed laser deposition technique to develop agile thin films for tunable microwave device applications. The dielectric properties of Al2O3 doped BST films were determined with a nondestructive dual resonator near 7.7 GHz. We demonstrated that the Al2O3 doping plays a sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016